欢迎访问向日葵视频官网官网!主营:钝化液 钝化剂 不锈钢钝化液 不锈铁钝化液 不锈钢酸洗钝化液 不锈钢电解抛光液

中文版|English|日本语

不锈钢钝化液

不锈钢电解抛光液

您当前位置:首页 > 媒体中心 > 技术动态 > 技术动态

奥氏体不锈钢的4大焊接问题及处理措施

2021-06-01 08:55 来源:向日葵视频官网化工
一、碳化铬的形成,降低焊接接头抗晶间腐蚀能力
晶间腐蚀:根据贫铬理论,焊缝和热影响区在加热到450-850℃敏化温度区时在晶界上析出碳化铬,造成贫铬的晶界,不足以抵抗腐蚀的程度。
 
(1)、针对焊缝晶间腐蚀和目材上敏化温度区腐蚀,可采用下列措施加以限制:
a.减少母材及焊缝的含碳量,母材中添加稳定化元素Ti、Nb等元素使之优先形成MC,以避免Cr23C6形成。
 
b.使焊缝形成奥氏体加少量铁素体的双相组织。焊缝中存在一定数量的铁素体时,可细化晶粒,增加晶粒面积,使晶界单位面积上的碳化铬析出量减少。
 
铬在铁素体中溶解度较大,Cr23C6优先在铁素体中形成,而不致使奥氏体晶界贫铬;散步在奥氏体之间的铁素体,可防止腐蚀沿晶界向内部扩散。
 
c.控制在敏化温度区间的停留时间。调整焊接热循环,尽可能缩短600~1000℃的停留时间,可选择能量密度高的焊接方法(如等离子氩弧焊),选用较小的焊接线能量,焊缝背面通氩气或采用铜垫增加焊接接头的冷却速度,减少起弧、收弧次数以避免重复加热,多层焊时与腐蚀介质的接触面尽可能最后施焊等。
 
d.焊后进行固溶处理或稳定化退火(850~900℃)保温后空冷,以使碳化物充分析出,并使铬加速扩散 )。
 
(2)、焊接接头的刀状腐蚀,由于碳的扩散能力较强,在冷却过程中将偏聚在晶界形成过饱和状态,而Ti、Nb则因扩散能力低而留于晶体内。当焊接接头在敏化温度区间再次加热时,过饱和碳将在晶间以Cr23C6形式析出。为此,可采取如下预防措施:
 
a.降低含碳量。对于含有稳定化元素的不锈钢,含碳量不应超过0.06%。
 
b.采用合理的焊接工艺。选择较小的焊接线能量,以减少过热区在高温停留时间,注意避免在焊接过程中产生“中温敏化”效果。
 
双面焊时,与腐蚀介质接触的焊缝应最后施焊(这是大直径厚壁焊管内焊在外焊之后进行的原因所在),如不能实施则应调整焊接规范及焊缝形状,尽量避免与腐蚀介质接触的过热区再次受到敏化加热。
 
c.焊后热处理。焊后进行固溶或稳定化处理。
二、应力腐蚀开裂
可采用下列措施防止应力腐蚀开裂的发生:
 
a.正确选择材料及合理调整焊缝成分。高纯铬-镍奥氏体不锈钢、高硅铬-镍奥氏体不锈钢、铁素体-奥氏体不锈钢、高铬铁素体不锈钢等具有较好的抗应力腐蚀性能,焊缝金属为奥氏体-铁素体双相钢组织时抗应力腐蚀性良好。
 
b.消除或减小残余应力。进行焊后消除应力热处理,采用抛光、喷丸和锤击等机械方法降低表面残余应力。
 
c.合理的结构设计。以避免产生较大的应力集中。
 
三、焊接热裂纹(焊缝结晶裂纹、热影响区液化裂纹)
热裂纹敏感性主要取决于材料的化学成分、组织与性能。Ni易与S、P等杂质形成低熔点化合物或共晶,硼、硅等的偏析,将促使产生热裂纹。
 
焊缝易形成方向性强的粗大柱状晶组织,有利于有害杂质和元素的偏析。从而促使形成连续的晶间液膜,提高了热裂纹的敏感性。若焊接不均匀加热,则易形成较大的拉应力,促进焊接热裂纹的产生。防止措施:
 
a.严格控制有害杂质S、P的含量。
 
b.调整焊缝金属的组织。双相组织焊缝具有良好的抗裂性能,焊缝中的δ相可细化晶粒,消除单相奥氏体的方向性,减少有害杂质在晶界的偏析,且δ相能溶解较多的S、P,并能降低界面能,组织晶间液膜的形成。
 
c.调整焊缝金属合金成分。在单相奥氏体钢中适当增加Mn、C、N的含量,加入少量的铈、镐、钽等微量元素(可细化焊缝组织、净化晶界),可减少热裂纹敏感性。
 
d.工艺措施。尽量减小熔池过热,以防止形成粗大的柱状晶,采用小线能量及小截面焊道。
 
四、焊接接头的脆化
热强钢应保证焊接接头的塑性,防止高温脆化;低温用钢要求具有良好的低温韧性,防止焊接接头发生低温脆断。
>>> 点击产品与解决方案了解更多内容
向日葵视频官网公司十多年来一直专注于不锈钢钝化和抛光技术的开发及生产
如有需要,欢迎联系
服务热线,向日葵app下载为您提供免费的样品和技术指导
电话:400-881-6105 丨 0769-87633321
地址:广东省东莞市松山湖国际金融创新园D区44A栋
文章版权属于向日葵视频官网公司,转载请注明来源(东莞市向日葵视频官网化工),谢谢